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Abstract. Distributed acoustic sensors (DASs) can effectively monitor acoustic fields along sensing fibers with
high sensitivity and high response speed. However, their data processing is limited by the performance of
electronic signal processing, hindering real-time applications. The time-wavelength multiplexed photonic
neural network accelerator (TWM-PNNA), which uses photons instead of electrons for operations, significantly
enhances processing speed and energy efficiency. Therefore, we explore the feasibility of applying TWM-
PNNA to DAS systems. We first discuss processing large DAS system data for compatibility with the
TWM-PNNA system. We also investigate the effects of chirp on optical convolution in complex tasks and
methods to mitigate its impact on classification accuracy. Furthermore, we propose a method for achieving
an optical full connection and study the influence of pruning on the full connection to reduce the computational
burden of the model. Experimental results indicate that decreasing the ratio ofΔλchirp∕Δλ or choosing push–pull
modulation can eliminate the impact of chirp on recognition accuracy. In addition, when the full connection
parameter retention rate is no less than 60%, it can still maintain a classification accuracy of over 90%.
TWM-PNNA provides an innovative computational framework for DAS systems, paving the way for the
all-optical fusion of DAS systems with computational systems.
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1 Introduction
Fiber-optic distributed acoustic sensors (DASs) are at the fore-
front of fiber sensing measurement technology. In addition to
the characteristics of traditional distributed fiber-optic sensing
systems, such as resistance to electromagnetic interference,
good concealment, corrosion resistance, and long detection dis-
tances, DAS can also achieve real-time detection of dynamic
strain with high sensitivity and rapid response. This technology

shows significant advantages and application prospects in major
infrastructures, including seismic wave monitoring,1 oil and gas
resource exploration,2 submarine cable monitoring,3 railway
traffic operation monitoring,4 and overhead transmission lines.5

However, environmental factors and benign human interfer-
ence can lead to false alarms and missed detections, and the high
rates of false alarms and missed detections have been a bottleneck
limiting its performance in field applications. In recent years,
with the continuous advancements in machine-learning and
deep-learning technologies, several algorithms have emerged
that can autonomously summarize patterns by analyzing large
data sets and flexibly adjusting their parameters, achieving
high-precision event recognition in a short time. Various event
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recognition techniques for DAS systems have been proposed:
morphological feature extraction methods have achieved over
90% accuracy in classifying three types of disturbances;6 wavelet
energy spectrum analysis combined with relevance vector
machines has achieved an 88.6% recognition rate;7 attention
mechanism-based LSTM methods have achieved a 94.3%
recognition rate among five types of disturbances;8 convolutional
neural networks (CNNs) combined with bandpass filtering and
gray-scale conversion preprocessing have achieved an accuracy
of 96.67%;9 artificial neural networks (ANNs) can improve the
linearity of strain noise and underground motion measurements;10

andMarkov transition fields and nonnegative matrix factorization
methods can enhance the average recognition rate of fence events
by over 13%.11 In addition, transfer learning methods can achieve
an accuracy of 95.56% with low computational costs, even with
small sample training.12

Currently, the ANN employed in the aforementioned DAS
systems primarily relies on central processing units. Although
GPUs offer significant advantages in processing demodulated
DAS data, they cannot overcome the limitations of electronic
computing on DAS systems. The emergence of optical comput-
ing technology offers a potential solution to these challenges.
It utilizes photons instead of electrons to perform computational
operations, enabling processing speeds that far exceed those of
traditional electronic computing. Furthermore, optical comput-
ing can achieve high parallelism through wavelength multiplex-
ing and offer higher energy efficiency. Therefore, this article
proposes the integration of optical computing systems and DAS
systems and emphasizes the use of optical computing to achieve
co-GPU functionality and process-demodulated DAS data,
providing a new direction for postprocessing DAS system data.

Photonic neural networks can be categorized into three types:
those based on on-chip coherent principles, those based on
spatial optical structures, and those utilizing time-wavelength
multiplexing (TWM) technology. Neural networks based on on-
chip coherent principles mainly rely on topologically cascaded
Mach–Zehnder interferometer (MZI) arrays, employing coher-
ent light and matrix singular value decomposition to achieve an
integrated photonic neural network architecture on a chip. With
interference from factors such as detector noise and thermal
cross talk, errors accumulate during the MZI cascading process,
resulting in an accuracy of only 76.7% in voice recognition tasks
involving four vowels.13 In addition, a phase control scheme has
been proposed to enhance this architecture, enabling the reali-
zation of complex photonic neural networks that can improve
handwritten digit recognition accuracy to 90.5%.14 Nonetheless,
challenges related to fabrication errors15 and uneven distribution
of rotating rotors16 hinder the large-scale integration of photonic
neural networks based on on-chip coherent principles. Neural
networks based on spatial optical structures can be implemented
using various spatial optical devices. For example, a fully opti-
cal deep-learning framework that uses only optical diffraction
and passive optical components for machine-learning tasks has
been proposed and applied to handwritten recognition tasks.17

For further integration, a novel on-chip diffractive optical neural
network architecture based on a silicon-on-insulator platform
has been proposed, featuring high integration and low power
consumption, which allows for low-cost mass production.18

Although this approach improves integration, classification ac-
curacy and generalization to other tasks need further enhance-
ment. Optical neural networks based on TWM technology offer
a parallel optical neural network that does not require matrix

decomposition and can directly correspond wavelengths to ma-
trix elements, enabling large-scale scalability. For instance, a
photonic convolution accelerator based on an optical frequency
comb has been proposed, utilizing wavelength division multi-
plexing (WDM) technology and fiber dispersion delay to
achieve large-scale parallel convolution, achieving over 10 tril-
lions of operations per second (TOPS) of computational power
while recognizing handwritten digits with an accuracy of 88%.19

Furthermore, a fully integrated photonic processing unit con-
taining a microcomb source, silicon electro-optic modulator, mi-
croring weight library, and optical delay line has been proposed
for convolution operations, realizing image edge detection and
handwritten digit recognition.20 To enhance computational
capability, a scheme combining TWM and multimode interfer-
ence coupling has been proposed, supporting three 2 × 2 real-
valued kernels and enabling parallel convolution operations.21

In addition, TWM photonic neural networks have been used to
process high-order tensors,22,23 achieving promising results.

Advanced photonic neural networks have made significant
progress in handling classification tasks, offering a promising
alternative to traditional electronic neural networks. This paper
proposes a time-wavelength multiplexed photonic neural net-
work accelerator (TWM-PNNA) system, aimed at achieving
optical convolution and optical fully connected computations
while exploring the potential applications of TWM-PNNA in
DAS systems. The system employs optical technologies to
enhance computational efficiency, supporting effective data
processing and feature extraction. As the data collected by
DAS contain spatial and temporal dimensions and are large in
volume, real-time processing is challenging; thus, the issue of
adapting DAS data to the TWM-PNNA system needs to be
addressed. In addition, modulation chirp can cause pulse broad-
ening and intersymbol interference, necessitating solutions for
quantifying and mitigating the effects of modulation chirp.
Furthermore, the fully connected layers have numerous param-
eters and complex computations, making it essential to explore
how to reduce the model size through pruning and achieve real-
time, high-speed optical fully connected operations. This paper
investigates the related research on these three issues.

2 Principles

2.1 Data Acquisition and Processing of a DAS System

DAS is a novel distributed optical fiber sensing technology
using coherent detection on the basis of Φ-OTDR. The DAS
we designed acquires the phase information of Rayleigh scatter-
ing light through spatial differential interferometry technology
to achieve the reconstruction of external vibration signals.24 We
employ a DAS system based on heterodyne coherent detection
to collect experimental data,5,25–28 as shown in Fig. 1(a). The
narrow linewidth laser (NLL) with a 3-kHz frequency width
operating at 1550.12 nm was selected as the light source. The
output of the NLL was split into two components, at 80%
and 20% as the probe light and the local reference light by
an optical coupler, respectively. The probe light is modulated
by an acousto-optic modulator (AOM) into a probe pulse with
a 150-MHz frequency shift. The probe pulse with a pulse width
of 100 ns and repetition rate of 2 kHz was amplified in an
erbium-doped fiber amplifier (EDFA), and then, it was injected
into the sensing fiber through a circulator. The Rayleigh back-
scattering (RBS) light returning from the sensing fiber is mixed
with the local reference light.
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The mixed signal is detected by a balanced photodetector
(BPD) with a 200-MHz bandwidth. The signals from coupler2
enter the photodetectors (PDs). Then, an 8-bit data acquisition
(DAQ) card continuously sampled the output data with a 1-GHz
sampling rate. The phase demodulation was completed by an IQ
demodulation module (DM). When external vibrations induce
fluctuations in the backward Rayleigh light power at specific
points along the sensing fiber over time, the variations in the in-
terference signal can be analyzed to facilitate the reconstruction of
vibration information.29 Finally, the two-dimensional (2D) time-
space matrix can be obtained by accumulating the temporal
responses along the spatial axis.

The raw signals collected by the system are shown in
Fig. 1(b). During the 10-s sensing period, various disturbance
events were recorded. Due to the influence of system and envi-
ronmental noise, directly distinguishing different disturbance
characteristics becomes challenging. Therefore, we employ
an adaptive median filter to reduce noise interference in the
sensing data and perform global quantization processing. As
a result of the large amount of redundant information in the
denoised data, which increases the burden of subsequent
processing, we use linear interpolation to compress the data into
a 36 × 36 image while preserving the original image features
and distance information. After processing, different types of

disturbances still exhibit their unique 2D spatiotemporal char-
acteristics, including background noise, climbing, vehicle pas-
sage, and tapping events, as shown in Fig. 1(c). In addition,
considering that the absolute value of phase-amplitude informa-
tion below the threshold in Fig. 1(b) is all background informa-
tion, the threshold is set to 7.35, and the compressed image is
binarized, as shown in Fig. 1(c). After collecting a large amount
of experimental data, we reconstructed the data set and ran-
domly split it into training and testing sets at a ratio of 8:2, with
detailed information provided in Table 1.

Fig. 1 (a) Setup of DAS system; (b) raw signals collected by the system; (c) spatiotemporal maps
of various events after denoising and quantization. NLL, narrow linewidth laser; OC, optical
coupler; AOM, acousto-optic modulator; DAQ, digital acquisition card; Cir, circulator; EDFA,
erbium-doped fiber amplifier; BPD, balanced photodetector; PG, pulse generator; BPF, bandpass
filter; LNA, low-noise amplifier; DM, demodulation module.

Table 1 Database construction for vibration events.

Event type Train Test Total Label

Event 1 (background) 826 206 1032 0

Event 2 (climbing) 676 170 846 1

Event 3 (vehicle passing) 712 178 890 2

Event 4 (knocking) 757 189 946 3

… … … … …

Event N A B A + B N − 1

Yu et al.: Time-wavelength multiplexed photonic neural network accelerator for distributed acoustic sensing systems

Advanced Photonics 026008-3 Mar∕Apr 2025 • Vol. 7(2)



2.2 Photonic Neural Network Accelerator

In CNN, convolution operations are performed on images to ob-
tain feature maps. Each point in the feature map is the result of
multiplying and summing the values of the convolution kernel
with the corresponding pixel values at that position. The con-
volution kernel slides over the image with a specified stride,
ultimately forming a feature map. As the convolution kernel
remains unchanged during this sliding process, a single kernel
can only extract one feature map. To obtain multiple feature
maps, multiple convolution kernels are required. To facilitate
the implementation of this process in optical systems, it is
necessary to flatten the 2D image data into one-dimensional
(1D) data. The flattening method and the principles of pho-
tonic convolution operations are illustrated in Fig. 2. First,
l2 groups of 1D data are combined to form an image matrix
X ¼ ½XCON11; XCON12;…; XCON1l2 �. Simultaneously, the l × l
convolution kernel is flattened into a vector W ¼
½w11; w12;…; w21;…; wll� containing l2 elements and multi-
plied with the image matrix X to obtain the convolution results
½XCON1; XCON2;…; XCONK�. This process is akin to assigning
weights to the image matrix. Subsequently, each resulting col-
umn vector is delayed by one symbol, and the corresponding
values of the row vectors are summed to obtain 1D feature in-
formation. The above operations can be repeated for different
convolution kernels. After passing through the pooling layer
and nonlinear activation function in the electronic processing,
the feature map can yield the underlying information and
features of the image. Subsequently, all the information is

consolidated in the fully connected layer. Moreover, the num-
ber of output classes in the output layer of the fully connected
layer is set according to the data categories in the DAS data-
base. Each neuron in the output layer is connected to all neu-
rons in the previous layer with specific connection weights.
Therefore, the fully connected input data will be multiplied
by N different weight groups and added together, and the result
with the highest probability output is the classification result,
as shown in Fig. 2.

In the specific experiment, we used the setup shown in Fig. 3.
n independent tunable lasers emit light at n wavelengths, spaced
by Δλ, which constitute the

ffiffiffi
n

p
×

ffiffiffi
n

p
convolution kernels and

are combined into a single beam after passing through a WDM.
The effectiveness of WDM in enhancing data transmission, sys-
tem capacity, and signal integrity has been extensively demon-
strated in prior studies.30,31 This beam then enters an optical
switch (OSW), output from port A of the switch into a
Mach–Zehnder modulator (MZM, Fujitsu, FTM7937EZ, band-
width 30 GHz). A 36 × 36 pixels binarized image obtained
from the DAS database is flattened into a 1D vector X and en-
coded into an arbitrary waveform generator (AWG, Tektronix,
AWG7000B). The modulator working at the quadrature point
encodes this into an optical time-domain signal, with each pixel
represented by one bit of the modulated signal. The AWG trans-
mits the signal at a certain baud rate. At this point, vector X is
simultaneously modulated onto all n wavelengths. The output
vector is obtained by detecting the signals in each time slot.
A single-mode fiber (SMF) of a certain length provides
progressive delays for each channel to match the baud rate of

Fig. 2 Photonic neural network accelerator.

Yu et al.: Time-wavelength multiplexed photonic neural network accelerator for distributed acoustic sensing systems

Advanced Photonics 026008-4 Mar∕Apr 2025 • Vol. 7(2)



the data emitted by the AWG, ensuring that the signals on ad-
jacent wavelength channels are time-shifted by the same number
of symbol positions. In addition to SMF, as long as the delay
time matches the AWG rate, a waveshaper can also be used
for dispersion. Next, an EDFA is used to compensate for the
insertion loss of the modulator and the loss of light of different
wavelengths after passing through the SMF. The amplified
wavelength channels are then shaped by a wavelength-selective
switch (WSS, CoAdna, 50 GHz Nx1-1.2). WSS can be seen as
a combination of WDM, Mux/Demux, and filters, providing
flexible wavelength selection and routing functions while
controlling the attenuation of each wavelength channel. This
attenuation represents the weight information applied to each
wavelength channel, allowing the weight value Wi to be as-
signed to wavelength λi. Subsequently, the output light enters
a high-speed PD (Finisar, XPDV21x0, bandwidth 40 GHz),
which aggregates the total optical power at each wavelength.
In addition, the WSS can realize different convolution kernels
by reconfiguring the routing and attenuation of different wave-
length channels. Finally, the electrical output waveform after the
photonic convolution will be sampled and digitized by a high-
speed oscilloscope (OSC, Tek, DPO75902SX, bandwidth
70 GHz) to obtain the feature map. The optical switch is then
adjusted so that the laser light emitted from the lasers enters
through port B of the switch. The flattened feature map is also
loaded into the optical path through the AWG and MZM. The
output light from the modulator passes through the WDM, filter-
ing the laser light so that each output channel contains only one
wavelength. Furthermore, each output channel of the WDM
connects to an MZM to load different weight parameters,
thereby achieving multiplication operations. The output light
then enters the PD and is collected by the OSC, completing
the addition operations required for the fully connected layer
(for details of the experimental parameters, see Note S7 in
the Supplementary Material).

3 Pretraining of TWM-PNNA
A complete TWM-PNNA architecture includes optical convo-
lution layers and optical fully connected layers. Therefore, in
our demonstration, we first used all data sets in Table 1 to com-
plete the pretraining of the CNN, thus obtaining the necessary
parameters for each layer of the neural network. In addition, as
discrete tunable lasers were chosen as the input light source to
reduce experimental costs, we used four independent lasers,
resulting in a convolution kernel size of 2 × 2. To simplify the

model complexity, we set the number of convolution layers to 1
and the number of convolution kernels to 10. The more convo-
lution kernels there are, the more features can be extracted
within the same layer,32 allowing for the capture of various pat-
terns, textures, and edge information from the input data. It is
important to note that as the WSS can only attenuate optical
intensity information, negative convolution kernels cannot be
implemented. Therefore, during pretraining, negative convolu-
tion kernels need to be trimmed in advance to ensure they are
nonnegative while still achieving the classification task.
Furthermore, to prevent information loss during the transfer
through the neural network, we added a layer of blank pixels
around the image, known as padding. Subsequently, the stride
of the convolution kernel was set to 1, and the 2D image data
were flattened into 1D data according to the size of the convo-
lution kernel.

Subsequently, we loaded the 1D data into the optical signal
using the AWG. As the 1D data only contain two states, 0 and 1,
the output baud rate of the AWG is the same as the bit rate. To
ensure that the signals on adjacent wavelength channels are
time-shifted by one bit, the relationship among the AWG bit rate
vbit, the wavelength interval Δλ, and the length L of the SMF
can be expressed as

tbit ¼
1

υbit
¼ Δλ · L ·D; (1)

where D is the dispersion coefficient of the SMF,
∼17 ps km−1 nm−1. According to Eq. (1), it can be seen that
the TWM-PNNA is insensitive to wavelength. The delay is de-
termined by the wavelength interval, not the wavelength itself,
which in turn affects the matrix multiplication and subsequent
addition operations.33 When we set the wavelength interval Δλ
to 2 nm and the AWG baud rate to 10 Gbaud, the required fiber
length to achieve a symbol shift is 2.9 km. Subsequently, we
used the WSS to set different weight parameters for the 10 con-
volution kernels, as shown in Figs. 4(b1)–4(b10). Using climb-
ing events as an example, we present the results obtained after
performing optical convolution operations through the afore-
mentioned system, as shown in Figs. 4(a1)–4(a10). From the
figure, it can be observed that multiplying the image data with
different convolution kernels yields different data features as
reflected in the power of the waveforms. For instance, when the
convolution kernel is 0, as shown in Fig. 4(b9), the waveform
power is close to 0, indicating no features. In addition, when
the convolution kernel coefficients are larger, as shown in

Fig. 3 Experimental setup of the TWM-PNNA. AWG, arbitrary waveform generator; MZM, Mach–
Zehnder modulator; WSS, wavelength-selective switch; OSW, optical switch; WDM, wavelength-
division multiplexer; PD, photodetector.
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Figs. 4(b6) and 4(b10), the power of the waveforms in the fea-
ture maps is greater and more pronounced. However, due to the
presence of some noise in the system, increasing the number of
convolution kernels not only allows for the extraction of more
image features but also helps prevent the feature maps from
those kernels with smaller coefficients from being drowned
out by noise, thus affecting recognition accuracy. Next, we
reverse the process of flattening the 2D image into 1D data to
convert the 1D feature maps obtained after the optical convolu-
tion operation back into 2D feature maps, as shown in
Figs. 4(c1)–4(c10). A detailed explanation of the results of pho-
tonics convolution for other events can be found in Note S1 in
the Supplementary Material.

To independently verify the performance of the optical con-
volution accelerator in the TWM-PNNA, the subsequent pool-
ing, nonlinear, and fully connected parts were implemented on a
computer. The experimental results showed that the optical con-
volution accelerator achieved a classification accuracy of 95%
on the test set, whereas the electronic CNN reached an accuracy
of 98.3% on the test set. Owing to certain noise in the optical
path, the accuracy of the optical convolution accelerator is
slightly lower compared with the electronic CNN.

In addition, we experimentally verified the accuracy of the
test and training sets for image sizes of 16 × 16, 32 × 32,
36 × 36, 64 × 64, and 128 × 128, as shown in Fig. 5(a).
From the figure, it can be seen that when the image size is
16 × 16, the accuracy significantly decreases. This is due to ex-
cessive downsampling, which leads to the loss of image details
and information, causing the low-resolution image to fail to ac-
curately reflect the features of the original image. In addition,
it can be seen from the table that the accuracies of the 32 × 32
image and the 128 × 128 image are relatively close, indicating
that once the size of the image exceeds a certain range, the
impact of image size on accuracy can be ignored (for details
of the comparison of classification results, see Note S6 in
the Supplementary Material). Furthermore, we studied the
classification accuracy of binary and nonbinary images on the
electrical neural network under different image sizes, as shown
in Fig. 5(b). We can see that binarizing the DAS data image
does not significantly reduce image accuracy, indicating that
the information of the DAS data image is not lost after binar-
ization (for details of the comparison of classification results and
reliability and repeatability of results, see Notes S6 and S8 in the
Supplementary Material).

Fig. 4 Results of convolution operations in the TWM-PNNA. (a1)–(a10) 1D feature maps after
optical convolution; (b1)–(b10) 10 different convolution kernels; (c1)–(c10) restored 2D feature
maps.
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4 Results and Analysis of the Impact of
Chirp on TWM-PNNA

From the previous descriptions, it is evident that the wavelength
spacing among different channels of the laser has a significant
impact on the TWM optical computing system. However, as this
system uses an MZM to achieve intensity modulation, its output
expression during single-drive conditions can be represented as

jEoutj2 ¼ jEinj2 ·
1

2

�
1þ cos

�
Φ0 þ

πVpp

Vπ

��
; (2)

where Eout is the output electric field intensity of the modulator,
Ein is the input electric field intensity of the modulator,Φ0 is the
initial phase difference between the two arms of the MZM, Vpp

is the driving voltage of the modulator, and Vπ is the half-wave
voltage of the modulator. From Eq. (2), it can be seen that as
the output intensity of the modulator changes, its phase also
changes. As Δω ¼ dφ∕dt, where Δω is the frequency variation
in the output signal, phase changes will produce modulation
chirp. In addition, Δω ¼ ð−2πc∕λ2ÞΔλchirp, where c is the
speed of light in vacuum, λ is the operating wavelength, and
Δλchirp is the wavelength variation caused by the chirp.
Furthermore, Δλchirp will cause pulse broadening, and the pulse
broadening time can be expressed as Δtchirp ¼ D · L · Δλchirp.
Moreover, when the two arms of the MZM operate in a
push–pull state, meaning a relative RF signal v01ðtÞ ¼ −v02ðtÞ
is applied between the two modulation arms, the output optical
field can be expressed as

EoutðtÞ¼EinðtÞ·cos
�

π

2Vπ
ð2vinðtÞþVbiasÞ

�
exp

�
j
πðV1þV2Þ

2Vπ

�
;

(3)

where vinðtÞ ¼ 2v01ðtÞ. V1 and V2 are the DC bias voltages for
the two arms, and Vbias ¼ V1 − V2 is the total DC bias signal. In
this case, the output signal of the modulator retains a constant
phase shift term, which does not change with variations in the
RF signal, thus helping to reduce modulation chirp. In the
actual experiment, the signal output from the AWG passes
through an amplifier (SHF 804b 65 GHz) before entering the
MZM. For single-drive modulation, the driving voltage is
Vpp ¼ 3 V; for push–pull modulation, the driving voltage is
Vpp1 ¼ −Vpp2 ¼ 1.5 V (for details of noise control of push–pull

modulation and single-drive modulation, see Note S3 in the
Supplementary Material).

Based on the experimental results in Fig. 5, we set the image
size to 36 × 36. To ensure that the data-partitioning method is
consistent with common partitioning methods in the literature,
such as Refs. 11, 34, and 35, we randomly selected 50 images
from the training set of each category for training and 30 images
from the testing set of each category for testing. In the TWM-
PNNA system, for a single wavelength channel, the MZM can
load electrical signals with intensities ðx1; x2;…; x10Þ onto the
optical domain. In the absence of modulation chirp, each bit se-
quence remains independent, as shown in Fig. 6(a). However,
due to the interaction between modulation chirp and fiber
dispersion, pulse broadening occurs.36,37 When optical signals
carrying different intensity information pass through the delayed
optical fiber, interference arises between adjacent bits, resulting
in intersymbol interference (ISI) within the channel, as illus-
trated in Fig. 6(b). This phenomenon degrades signal transmis-
sion quality and increases the bit error rate (BER). Furthermore,
when the PD sums the power of signals from different

Fig. 5 Classification accuracy under different image sizes. (a) Electrical neural networks and
optical neural networks in binary images; (b) electrical neural networks in binary images and
nonbinary images.

Fig. 6 Comparison of chirp effects. (a) Without chirp. (b) With
chirp.

Yu et al.: Time-wavelength multiplexed photonic neural network accelerator for distributed acoustic sensing systems

Advanced Photonics 026008-7 Mar∕Apr 2025 • Vol. 7(2)

https://doi.org/10.1117/1.AP.7.2.026008.s01


wavelengths, modulation chirp amplifies signal distortion, exac-
erbating its negative impact on the computational accuracy of
convolution kernels in the TWM-PNNA system, as indicated
by the black dashed box in Fig. 6. In addition to pulse broad-
ening, modulation chirp also causes spectral broadening of the
signal, significantly increasing the probability of spectral over-
lap between adjacent channels in WDM systems.38 This spectral
overlap can increase interchannel cross talk, reducing the signal-
to-noise ratio. These combined effects significantly impact
the computation accuracy and BER performance of the system,
as reflected in the experimental results.

Furthermore, according to Eq. (1), although the time interval
Δt between each bit within each wavelength channel is directly
determined by the AWG rate, there exists a certain quantitative
relationship with the wavelength interval Δλ. There is also a
quantitative relationship between the pulse broadening Δtchirp
and the wavelength change Δλchirp caused by chirp. As long
as the optical fiber length matches the AWG rate, we can obtain
this relationship Δtchirp∕Δt ¼ Δλchirp∕Δλ, allowing us to ignore
the effect of fiber length. Therefore, we only need to calculate
Δλchirp∕Δλ to measure the impact of modulation chirp on the
TWM-PNNA.

To further investigate the impact of modulation chirp on the
TWM-PNNA, we reduced the wavelength spacing. Given that

the minimum wavelength spacing of the used WSS is 0.4 nm,
we set the wavelength spacing of the lasers to Δλ ¼ 0.4 nm to
match the WSS. At the same time, we adjusted the AWG rate to
20 Gbps. In this case, the interval between each bit is 50 ps.
In addition, according to Eq. (1), we chose the length of SMF
to be 7.35 km to ensure signal matching across different wave-
length channels. Moreover, the corresponding calculations
indicate that the signal bandwidth is ∼14 GHz, corresponding
to Δλchirp ¼ 0.11 nm. Thus, Δλchirp∕Δλ ¼ 0.275. To verify the
effect of modulation chirp on the experimental results, the
subsequent pooling, nonlinear, and fully connected parts were
implemented on a computer, consistent with previous ex-
periments.

The experimental results indicate that under these conditions,
when the modulator operates in single-drive modulation, the
classification accuracy is only 77%, as shown in the confusion
matrix in Fig. 7(e). By contrast, when the modulator operates in
push–pull conditions, the classification accuracy significantly
improves to 90.8%, as shown in Fig. 7(d). When the modulation
rate is 20 Gbps and the wavelength spacing is 2 nm, the corre-
sponding Δλchirp∕Δλ is 0.055, with the confusion matrices for
both push–pull and single-drive modulation shown in Figs. 7(b)
and 7(c). From the figures, we can see that both modulation
methods achieve high accuracy in classification tasks, with a

Fig. 7 Confusion matrix for the DAS classification task with image size of 36 × 36. (a) Electrical
CNN confusion matrix; (b)–(e) photonic convolution kernel confusion matrices; (b) push–pull
modulation with wavelength spacing of 2 nm; (c) single-drive modulation with wavelength spacing
of 2 nm; (d) push–pull modulation with wavelength spacing of 0.4 nm; (e) single-drive modulation
with wavelength spacing of 0.4 nm.
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difference of less than 1%. Keeping the modulation rate con-
stant, we selected different wavelength spacings and conducted
classification experiments under both modulation methods, with
results shown in Fig. 8. Regardless of the modulation method
used, as the wavelength spacing increases, the classification ac-
curacy shows a rising trend. Moreover, the classification accu-
racy of push–pull modulation is significantly better than that of
single-drive modulation at different wavelength spacings, indi-
cating that modulation chirp reduces the accuracy of TWM-
PNNA; this effect is more pronounced with smaller wavelength
spacings. In addition, we found that when Δλ ¼ 1.2 nm, which
corresponds to Δλchirp∕Δλ ≈ 0.1, the classification accuracy for
single-drive modulation is 90%, as indicated by the dashed box
in Fig. 8. Although modulation chirp has some impact on clas-
sification, the results remain acceptable. Therefore, we can set
Δλchirp∕Δλ ¼ 0.1 as the chirp threshold for this system. Above
this threshold, it is preferable to choose push–pull modulation,
whereas below this threshold, single-drive modulation can still
be considered.

Optical signals are affected by dispersion when propagating
in optical fibers, especially chirped signals, which can exacer-
bate pulse broadening and cause signal distortion. Studying
chirping can help optimize the phase and spectral characteristics
of optical signals, reduce the impact of dispersion, and thus im-
prove signal quality. In the TWM-PNNA system, the interaction
between wavelengths may lead to signal degradation, especially
when the chirp is not optimized. Effective control of chirping
can improve the bandwidth utilization of optical signals, provid-
ing the possibility for optical computing systems to support
more wavelength multiplexing channels, thereby achieving
higher computational efficiency and communication rates. This
aspect has not been adequately analyzed in existing work.

Traditional photonic neural network tasks mainly use the
MNIST standard data set, where images are small in size
(28 × 28) with distinct features. As a result, smaller convolution
kernels (2 × 2 or 3 × 3) are sufficient to accomplish recognition
tasks. However, as photonic neural networks begin to tackle
more general tasks, the image sizes in data sets increase, and
the features become more complex, necessitating larger convo-
lution kernels, such as 5 × 5 or 7 × 7. This presents certain chal-
lenges to the TWM-PNNA system. In this system, the larger the
convolution kernel, the more lasers are required. As the devices

used in this system mainly operate in the C-band (1530 to
1560 nm), the available wavelength range is limited. Therefore,
it is necessary to expand the size of the convolution kernel by
reducing the wavelength spacing Δλ. However, reducing Δλ is
affected by the modulation chirp Δλchirp, making it important to
study the impact of modulation chirp on the TWM-PNNA
system. In addition, chirp-free modulation requires applying
two opposite RF signals to the MZM, which increases system
complexity and cost. Thus, studying the relationship between
Δλchirp∕Δλ under single-drive modulation can provide a novel
perspective on how to increase the convolution kernel size with-
out increasing system complexity and cost. This would establish
a theoretical foundation for enabling the system to handle more
general tasks. Furthermore, compared with the solution of using
dispersion compensation fibers to reduce modulation chirp, this
approach is more flexible and cost-effective.39

5 Pruning Experiment Results and Analysis
of TWM-PNNA

Pruning is a commonly used model compression technique in
neural networks that helps make the constructed network mod-
els more lightweight. Currently, pruning techniques have been
shown to achieve a good balance between computational resour-
ces and model performance during the inference phase.40 After
pruning a network, the model’s performance can sometimes
even improve compared with the original, resulting in signifi-
cant enhancements in memory usage and processing speed.
Recently, this technique has been widely applied to various
architectures, including CNNs,41 recurrent neural networks,42

transformer-based models,43 and diffusion models.44

Pruning in deep-learning networks can be divided into three
categories: pruning before training, pruning during training, and
pruning after training (PAT). Currently, most optical neural
networks are not capable of online training. The architecture of
these optical neural networks is typically realized by loading
pretrained neural network weight parameters to perform optical
computation. Therefore, pruning techniques for optical neural
networks are based on the principles of PAT, where pruning is
applied to the trained weight parameters. In densely connected
electrical neural networks, unstructured pruning can be treated
as a constrained optimization problem, and its expression is
as follows:45

min
w

Lðw;DÞ ¼ min
w

1

N

XN
i¼1

lðw; ðxi; yiÞÞ; s:t: kwk0⩽k: (4)

Here, D ¼ fðxi; yiÞgni¼1 represents a data set, lð·Þ is the stan-
dard loss function, and w represents a series of weights in the
neural network. k · k denotes the standard L0-norm, and k is the
total number of nonzero elements in the weight set w. In this
paper, the proposed TWM-PNNA architecture is suitable for
unstructured pruning, where it is not necessary to directly set
the weights to 0. Instead, the corresponding elements in the
mask matrix m can be set to 0, and then, a dot product is per-
formed. The result can be expressed as

min
w

Lðw⊙m;DÞ ¼ min
w;m

1

N

XN
i¼1

lðw⊙m; ðxi; yiÞÞ;

s:t: kmk0⩽k: (5)
Fig. 8 Relationship between wavelength spacing and classifica-
tion accuracy under different modulation schemes.
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In the TWM-PNNA architecture, the network at weight ini-
tialization can be represented as fðx;w0Þ. After the network
has completed training and achieved optimal performance, the
weights of the network are updated, which can be expressed as
fðx;wTÞ. Following PAT optimization, the pruned network is
represented as fðx;wT⊙m0Þ, where m0 is the corresponding
mask matrix. This mask matrix m0 preserves the performance
of the trained model while also helping to compress the entire
model.

In Fig. 9, we primarily focus on posttraining pruning.
Neurons in the fully connected layer can be classified as
strongly correlated and weakly correlated based on their rel-
evance to the classification results. In fully connected layers,
the weakly correlated neurons are more likely to be pruned.
The strength of neurons can be determined through gradient
descent. Recognizing sensor events is an M-class classification
task, so the parameters of the fully connected layer form an
M × N weight matrix. Therefore, each wavelength needs to
load a different weight vector of size 1 × N.

For electrical fully connected layers, the pruning operation
can be represented as the dot product of the weight matrix
wT and the mask matrix m0, meaning that the zeros in each
row of the weight matrix are randomly distributed. In optical
pruning, the lightweight nature of the pruned network model
must be considered, and the number of weights loaded per
wavelength should be consistent. This means that the number
of nonzero elements in each row of the weight matrix must
be uniform and equal to the number of features XFC input into
the fully connected layer. In addition, the weight length loaded
for each wavelength should be the same. Therefore, the pruned
weight matrix for the fully connected layer can be expressed as

Wpruned ¼ W × ðD ×MÞ: (6)

Here, W, D, and M represent the trained weight matrix, a
diagonal matrix, and a mask matrix, respectively. After the prun-
ing process, the pruned weight matrix is obtained, and the size
of the model can be compressed by retaining only the nonzero
elements.

We used the experimental setup shown in Fig. 3 and switched
the optical switch to port B. The pooled signals were loaded into
the optical path through the first modulator, and the WDM

divided the optical signal into different optical paths, with each
optical path corresponding to a neuron in the fully connected
layer.46 During the pretraining process, pruning techniques were
applied to obtain parameters under different retention rates.
These parameters were then loaded into the optical paths via
the second modulator, where they were multiplied with the
corresponding optical signals. At the same time, both modula-
tors operate at the quadrature point. Finally, the multiplied sig-
nals were collected by a PD and accumulated to obtain the
classification results of the fully connected layer. A detailed ex-
planation of the principle of achieving fully connected operation
through an MZM can be found in Note S2 in the Supplementary
Material. WSS is limited by essentially fixed weights and port
numbers in fully connected operations, making it difficult to
meet dynamic and large-scale requirements. We propose using
modulators to achieve fully connected computation. Compared
with WSS, modulators have higher scalability and flexibility in
fully connected computation and can dynamically adjust
weights with fast speeds to meet complex network require-
ments. WSS is more suitable for convolution operations with
fixed weights. At the same time, in the scheme of implementing
full connection based on modulators, we also studied the
impact of pruning on the fully connected results. Pruning opti-
mizes resource allocation, improves computational efficiency,
and reduces hardware requirements and system complexity by
reducing redundant weight connections.

The experimental results are shown in Fig. 10. As seen in the
figure, when the retention rate is between 0.6 and 1, the accu-
racy of the system decreases only slightly. However, when the
retention rate drops below 0.6, there is a significant drop in ac-
curacy. Therefore, a retention rate of 0.6 is a critical point for
the system’s accuracy, providing a basis for model simplification.

6 Discussion
In addition, the convolution operation speed in the TWM-
PNNA system can be expressed as: 2 × (number of kernels) ×
(kernel size) × (baud rate) = 2 × 10 × 4 × 20 = 1.6 TOPS.
In this work, a 2 × 2 kernel generates a convolution window
with a vertical stride of 1, so the effective matrix computation
speed is 1.6∕1 ¼ 1.6 TOPS. According to the calculation
method in Ref. 19, the computation speed can be further

Fig. 9 Pruning scheme in the TWM-PNNA.
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improved by increasing the number of wavelengths and data
rate. For example, when the number of wavelengths is 81
and the speed of AWG reaches 50 Gbaud, the speed of the
TWM-PNNA system can reach 81 TOPS. Furthermore, besides
speed, another important indicator of optical computing is
power consumption. In our proof-of-concept configuration,
power consumption mainly comes from tunable lasers, EDFA,
modulator drivers,47–50 WSS,51 etc. However, the demonstration
in this work relies on discrete devices; it is difficult to fully
showcase the ultimate capabilities of our approach. Thanks
to the development of hybrid and monolithic integration tech-
niques,52,53 as well as advancements in related technologies, the
functions of the discrete devices used in the experiment can be
implemented using integrated chips, which provides the pos-
sibility to measure the power consumption of TWM-PNNA
systems. Therefore, we provide an estimation of the energy
efficiency for a fully integrated optical TWM-PNNA (in line
with the similar protocols in Refs. 19, 20, and 54). The excepted
power consumption is ∼1.83 W, corresponding to an excepted
energy efficiency of 0.87 TOPS/W for a fully integrated TWM-
PNNA with a 20 Gbaud modulation rate and 2 × 2 kernel size.
In addition, theoretically, when the processing speed reaches 81
TOPS, the power consumption is 3.85 W, achieving an energy
efficiency of 21.02 TOPS/W. TWM-PNNA demonstrates cer-
tain advantages compared with existing electrical processors55

and optical computing schemes.54,56–58 In addition, we have con-
ducted analyses on the system’s latency and time-to-comple-
tion,13,59 cost and physical size,60–62 and reliability63–65 (for
detailed information on power consumption estimation, please
refer to Note S4 in the Supplementary Material).

According to the principles of distributed acoustic sensing
(DAS) systems, the information collected at each moment con-
tains data from different spatial sensing points along the optical
fiber. Therefore, it is necessary to store the data from the pre-
vious moment while collecting data from the next moment,
which imposes certain requirements on storage duration.66 How-
ever, existing optical storage technologies struggle to achieve
storage times exceeding 10 s,67 making it difficult to meet the
needs of DAS systems. Consequently, without altering the cur-
rent DAS system structure, the only option is to use DAQ sys-
tems to complete the data collection tasks. Furthermore, the data
processing capability of the DAS system is limited by high-
performance analog-to-digital conversion (ADC) and the speed
of electronic signal processing. This bottleneck will result in the
DAS system being able to support only complex algorithms at
limited locations, preventing global coverage of these algo-
rithms. To address these limitations, optical computing, includ-
ing optical ADCs, presents a promising solution. Although it is
true that the nonlinearity and noise in optical systems pose chal-
lenges for optical ADCs to simultaneously achieve high preci-
sion (high resolution) and high bandwidth in DAS systems,
these limitations do not diminish the broader potential of optical
computing. By leveraging its inherent advantages in parallelism
and high energy efficiency, optical computing can be effectively
utilized to process DAS data. Moreover, combining optical sens-
ing with optical computing could offer significant benefits in size
(e.g., potentially allowing for all-optical on-chip integration with
DAS systems in the future), weight, and environmental adapt-
ability, thus paving the way for intelligent monitoring and re-
sponse in previously inaccessible or challenging environments.

Fig. 10 Pruning results in TWM-PNNA.
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The work of this article focuses on using TWM-PNNA as a
co-GPU to process DAS data. By integrating optical computing
into DAS systems, it is possible to complement or replace GPU-
based processing, providing a novel and efficient approach to
handling DAS data, and also proving that using optical comput-
ing to process DAS data is theoretically feasible. Future work
can improve the DAS system and reduce its need for storage and
high-performance ADCs. Meanwhile, in future work, optical
demodulation methods, optical nonlinear calculations,68 and
in situ training methods59,69 of optical neural networks will be
developed to achieve DAS system data processing, advancing
toward an all-optical DAS event recognition system (for details
of future-oriented all-optical DAS event recognition system,
see Note S5 in the Supplementary Material). In practical DAS
applications, environmental factors such as temperature fluctu-
ations, vibrations, fiber perturbations, and noise can impact
performance. To address these, the TWM-PNNA can integrate
adaptive mechanisms, including a temperature stabilization loop
for laser and modulator stability, a vibration isolation platform
to minimize mechanical disturbances, optical noise suppression
via narrowband filters, and periodic self-calibration for long-
term accuracy. These enhancements can enhance the robustness
and reliability of the TWM-PNNA in dynamic and unpredict-
able environments.

7 Conclusion
In this paper, we introduce a photonic neural network acceler-
ator into the real-time data processing of DAS systems for the
first time, based on the TWM mechanism. By combining the
high performance of fiber sensors with the high-speed data
processing capabilities of optical computing, rapid processing
of optical signals with low power consumption and high energy
efficiency is enabled, providing accurate classification results.
In addition, we investigate the impact of modulation chirp on
the CNN accelerator. The experimental results show that the
ratio of the wavelength shift caused by modulation chirp to the
wavelength spacing between adjacent laser channels Δλchirp∕Δλ
is an important metric for assessing the impact of chirp. When
the ratio of Δλchirp∕Δλ is greater than 0.1, recognition accuracy
is significantly affected by chirp. In this case, using a push–pull
modulation method or reducing the ratio of Δλchirp∕Δλ can
eliminate the impact of chirp on the accuracy, allowing the ac-
curacy to surpass 90% and even approach the 98.3% achieved
by electrical systems. This metric provides important guidance
for flexibly selecting modulation methods and reducing system
complexity. Furthermore, based on this architecture, we propose
an optical computing architecture capable of fully connected
layers and explore the impact of pruning on the performance
of this fully connected architecture. The outcomes further sup-
port that retaining more than 60% of the fully connected param-
eters corresponding to the neurons can still maintain over 90%
recognition accuracy, providing a basis for further reducing the
model size.
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or the supplementary information are available from the corre-
sponding authors.
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